常用的温度测量方案有几种:数字温度测量芯片,PT100,PT1000,热电偶,NTC等。其中,NTC温度测量的成本最低,但精度也最低。
主要用于不需要温度测量精度的场合。高处。
让我们结合您自己的用法介绍NTC。 1.什么是NTC NTC是具有负温度系数的热敏电阻,即其电阻值随温度升高而变小,但其变化趋势却呈指数变化,因此误差较大,因此不适合精确测量场合。
下图显示了NTC的温度-电阻变化曲线。通常,以室温(25℃)下的NTC的电阻值为标准值。
例如,一个100K NTC表示其在25°C时的电阻值为100K。 2. NTC测量方法NTC测量应分为两个步骤:步骤1.在25°C下,测量其标称电阻。
例如,100K NTC。使用万用表或电阻表记录25°C时的电阻值,并将测量值与标称值进行比较;步骤2.在特定温度下测量其电阻。
例如:将一个100K NTC放在60℃的恒温环境中(建议使用油箱进行测量,因为油箱的温度相对恒定)以测量其电阻值,记录测量值并进行比较用标称值,测试电阻值应在24.5K左右;您可以根据需要再测量几个温度点。上图显示了在24-40°C下标称值为100K的NTC电阻值。
3.当温度测量精度要求不高时,如何使用N TC电阻NTC可以测量温度。通常,NTC电阻和一定值电阻串联连接,并且可以通过测量电阻两端的电压来计算NTC的电阻值。
知道当前环境的大概温度值。电路图如下所示。
以下是我用于处理NTC数据的程序代码,首先计算当前的NTC电阻值,然后将其转换为温度值。使用的NTC的B值为3950,单片机为10位AD采样,编程环境为IAR。
需要说明的是,NTC的温度测量曲线的线性不是很好。为了提高精度,需要在不同的温度区域进行处理,以防止温度测量误差过大。
免责声明:本文内容经21ic授权后发布,版权归原作者所有。该平台仅提供信息存储服务。
本文仅代表作者的个人观点,并不代表该平台的立场。如有任何疑问,请与我们联系,谢谢!。
公司: 深圳市捷比信实业有限公司
电话: 0755-29796190
邮箱: momo@jepsun.com
产品经理: 李经理
QQ: 2215069954
地址: 深圳市宝安区翻身路富源大厦1栋7楼

更多资讯
获取最新公司新闻和行业资料。
- 电感传感器工作原理详解:自感式电感传感器如何实现高精度测量? 电感传感器工作原理概述电感传感器是一种利用电磁感应原理进行非接触式测量的传感器,广泛应用于工业自动化、机械制造和精密检测等领域。其中,自感式电感传感器是基于线圈自感变化来检测位移、振动或材料性质等物理...
- 从硬件到云端:如何高效实现 ThunderBolt 切换器与 TIA Portal 及 MindSphere 的联动 从硬件到云端:如何高效实现 ThunderBolt 切换器与 TIA Portal 及 MindSphere 的联动随着工业4.0的深入发展,企业对“软硬一体”的集成化解决方案需求不断上升。要充分发挥 ThunderBolt 切换器在高速数据交换中的潜力,必须将其与西门子...
- 齐纳管与TVS管原理深度解析:如何实现高效过压保护? 齐纳管与TVS管概述齐纳管(Zener Diode)和瞬态电压抑制二极管(TVS, Transient Voltage Suppressor)是电子电路中常见的两种电压稳压与过压保护器件。尽管它们在功能上存在相似之处,但在工作原理、应用场景及响应速度等方面有显著差...
- 如何正确选择温度开关与温度保险丝?实用指南 温度开关与温度保险丝选型全攻略在家电、工业设备及智能硬件设计中,合理选用温度开关与温度保险丝,是提升产品安全性和可靠性的重要步骤。以下从多个维度提供选型建议。1. 明确应用场景需求根据设备的发热特性决定保...
- 深度解析WAN2012K245HL5 vs H245C04:从硬件架构到实际部署的全面评测 前言:为何要进行跨型号对比?随着物联网设备日益多样化,不同型号之间的性能差异直接影响系统整体效率。本篇聚焦于两个典型代表——WAN2012K245HL5与H245C04,通过结构化对比揭示其在硬件设计、软件兼容性与现场部署中的真...
- 如何使用压敏电阻进行温度测量? 压敏电阻是一种对温度敏感的电阻,可以用来测量温度。以下是使用压敏电阻进行温度测量的步骤:选择合适的压敏电阻:根据要测量的温度范围和精度要求,选择合适的压敏电阻。一般来说,压敏电阻的电压越高,其灵敏度越...
- 如何提升铂电阻温度传感器与角度传感器的测量精度? 如何提升铂电阻温度传感器与角度传感器的测量精度?在现代智能系统中,传感器精度是决定系统性能的关键。无论是工业控制、航空航天还是新能源设备,精准的数据采集都离不开高性能传感器。本文聚焦于铂电阻温度传感器...
- 深入探讨:如何通过高值电阻与电容分压器实现高精度直流高压测量 高精度直流高压测量的关键技术:电阻与电容分压器协同作用在现代高电压工程领域,对直流高压测量的精度要求越来越高。采用高值电阻与高压电容组成的分压器系统,已成为实现高精度测量的重要手段。本文从技术细节出发...
- SBRT整流器原理详解:如何实现高效、稳定车载电源转换? SBRT整流器的结构与工作原理深度剖析SBRT(Schottky Barrier Rectifier with Temperature Compensation)整流器是近年来车用功率电子领域的重要创新,它在传统肖特基二极管的基础上,集成了温度传感与反馈控制机制,实现了“智能”整流功能...
- 深度解析:PTTC聚鼎系列电阻在智能硬件中的应用实践 背景介绍随着物联网(IoT)和智能硬件的快速发展,电子元器件的小型化、高性能化已成为行业主流趋势。PTTC聚鼎凭借其自主研发的精密电阻技术,推出了包括PVR05D和PMV0402-5R5E5R0在内的多款高性能贴片电阻,广泛服务于智能家居...
- PTTC聚鼎PT712M参数手册深度解读:从硬件到应用的最佳实践 PTTC聚鼎PT712M参数手册核心内容精析本文基于官方《PTTC聚鼎PT712M参数手册》对模块的关键特性进行深入解读,帮助开发者和技术人员快速掌握其使用要点与优化策略。1. 模块尺寸与封装设计外形尺寸:25mm × 25mm × 3.5mm,紧凑型设计...
- 如何选择适合的金属膜电阻以实现低温漂性能 金属膜电阻温漂控制的五大关键因素在设计高精度电路时,选择合适的金属膜电阻是确保系统稳定性的前提。以下从材料、结构、规格和环境适应性等方面进行系统分析。1. 明确温漂要求(TCR值)根据应用需求确定所需的温度系...
- 深入理解DBS控制器如何实现高效电源管理 DBS控制器在电源管理中的核心作用在复杂的电力系统中,DBS控制器不仅是信息处理中心,更是能量调度的“指挥官”。它通过对电池状态的全面感知与智能决策,实现从能量采集到负载分配的全过程优化。1. 数据采集与信号处理...
- 如何选择适合的器件?深入理解DIOFET与N MOSFET的Rds(on)关键指标 评估导通电阻Rds(on):决定功率器件选型的核心因素在设计高效电源系统时,正确评估和选择具备合适导通电阻(Rds(on))的功率器件至关重要。本篇文章将围绕DIOFET与传统N MOSFET的Rds(on)特性展开分析,帮助工程师在实际项目中做出...
- 变频空调AK技术揭秘:如何实现精准温控与极致省电? 变频空调AK技术原理与应用优势全面解读在变频空调领域,除了广为人知的“变频”概念外,各类专有技术如AK技术正逐渐成为产品差异化竞争的关键。本文将围绕“变频空调AK技术”展开,从技术原理、性能优势到实际用户体验...
- 深入解析低温漂插件电阻的技术原理与市场现状 低温漂插件电阻的技术原理深度剖析低温漂插件电阻之所以能在温度剧烈变化下保持阻值稳定,关键在于其材料特性和结构设计。本节将从材料科学角度揭示其技术本质。1. 材料选择决定温度特性主流低温漂电阻采用以下几种材...
- 深入解读Viking-ARG电阻精度:如何实现行业领先水平? Viking-ARG电阻精度技术深度剖析在众多高性能电阻产品中,Viking-ARG以其令人信服的精度表现脱颖而出。本文将从材料、工艺、测试三个维度,深入解析其为何能在精密电子领域保持领先地位。1. 精选合金材料奠定基础Viking-ARG使用...
- 如何提升电流感测采样晶圆电阻的测量精度 影响测量精度的关键因素分析在高精度电流检测系统中,采样晶圆电阻的性能直接决定整个系统的测量准确度。以下是影响其精度的主要因素:1. 制造工艺偏差晶圆制造过程中的光刻、蚀刻和薄膜沉积环节可能导致电阻值偏离标...
- 汽车级电流传感电阻器:实现高精度电流监测的关键组件 汽车级电流传感电阻器的重要性在现代智能汽车系统中,电流监测是确保电气系统安全、高效运行的核心环节。汽车级电流传感电阻器作为关键元件,广泛应用于电池管理系统(BMS)、电机控制单元(MCU)、车载充电系统(OBC)...
- 如何使用压敏电阻测量加速度? 压敏电阻可以用来测量加速度,但需要注意的是,它不能直接测量加速度的值,而只能测量加速度变化所产生的电压变化。压敏电阻可以与加速度的变化源并联,当加速度发生变化时,压敏电阻的电阻值也会发生变化。通过测量...